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Descrição:  

Multivariate time series (MTS) from healthcare data are often incomplete and irregular, 

which makes reliable clinical inference difficult [1-3]. In this healthcare setting, MTS 

are influenced by patients’ clinical conditions and the natural progression of care, 

resulting in sparsity due to missing data and irregularity caused by asynchronous 

sampling. Because of their sparsity and irregularity, a key step in managing healthcare 

MTS is missing data imputation (MDI). State-of-the-art MDI techniques increasingly 

depend on deep learning models [4], such as Self-Attention-Based Imputation for Time 

Series (SAITS) [5], Bidirectional Recurrent Imputation for Time Series (BRITS) [6], 

Gaussian Process Variational Autoencoder (GPVAE) [7], Unsupervised Generative 

Adversarial Network (USGAN) [8], and Multidirectional Recurrent Neural Network 

(M-RNN) [9]. These methods can learn the approximate distribution of the underlying 

data from the observed data [3]. However, MDI in healthcare MTS is usually assessed 

only with aggregate efficiency metrics—such as mean absolute error (MAE)—while 

the algorithmic fairness of the underlying deep-learning models remains unexamined. 

Algorithmic fairness—especially in healthcare—cannot be ignored, as algorithms used 

for clinical inference and decision-making have the potential to cause harm [10-11]. 

Missing data is a major source of algorithmic unfairness. Although several fairness 

concepts have been proposed, they mainly address downstream classification tasks and 

often ignore fairness issues that arise during deep learning–based missing data 

imputation (MDI) [12-13]. This proposal's main goal is to assess both the algorithmic 

efficiency and fairness of cutting-edge deep learning models for MDI. This research 

will highlight the fairness aspects of deep learning models in MDI and stress the 

significance of imputation methods in healthcare MTS that focus on both efficiency 

and fairness in developing new deep-learning techniques for MDI. 
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