

Universidade de Pernambuco Programa de Pós-Graduação em Engenharia da Computação (PPGEC)

Proposta de Dissertação de Mestrado

Área: Computação Inteligente

Título: Uncovering Algorithmic Fairness in Deep Learning-Based Imputation of

Multivariate Clinical Time Series

Orientador(a): Diego Marconi Pinheiro Ferreira Silva (dmpfs@ecomp.poli.br)

Coorientador: Carlo Marcelo Revoredo da Silva (cmrs@poli.br)

Descrição:

Multivariate time series (MTS) from healthcare data are often incomplete and irregular, which makes reliable clinical inference difficult [1-3]. In this healthcare setting, MTS are influenced by patients' clinical conditions and the natural progression of care, resulting in sparsity due to missing data and irregularity caused by asynchronous sampling. Because of their sparsity and irregularity, a key step in managing healthcare MTS is missing data imputation (MDI). State-of-the-art MDI techniques increasingly depend on deep learning models [4], such as Self-Attention-Based Imputation for Time Series (SAITS) [5], Bidirectional Recurrent Imputation for Time Series (BRITS) [6], Gaussian Process Variational Autoencoder (GPVAE) [7], Unsupervised Generative Adversarial Network (USGAN) [8], and Multidirectional Recurrent Neural Network (M-RNN) [9]. These methods can learn the approximate distribution of the underlying data from the observed data [3]. However, MDI in healthcare MTS is usually assessed only with aggregate efficiency metrics—such as mean absolute error (MAE)—while the algorithmic fairness of the underlying deep-learning models remains unexamined. Algorithmic fairness—especially in healthcare—cannot be ignored, as algorithms used for clinical inference and decision-making have the potential to cause harm [10-11]. Missing data is a major source of algorithmic unfairness. Although several fairness concepts have been proposed, they mainly address downstream classification tasks and often ignore fairness issues that arise during deep learning-based missing data imputation (MDI) [12-13]. This proposal's main goal is to assess both the algorithmic efficiency and fairness of cutting-edge deep learning models for MDI. This research will highlight the fairness aspects of deep learning models in MDI and stress the significance of imputation methods in healthcare MTS that focus on both efficiency and fairness in developing new deep-learning techniques for MDI.

Referências Bibliográficas:

- [1] Tipirneni, S. and Reddy, C. K. (2022). Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series. ACM Trans. Knowl. Discov. Data.
- [2] Liu, M., Li, S., Yuan, H., Ong, M. E. H., Ning, Y., Xie, F., Saffari, S. E., Shang, Y., Volovici, V., Chakraborty, B., and Liu, N. (2023). Handling missing values in health-care data: A systematic review of deep learning-based imputation techniques. Artificial Intelligence in Medicine.
- [3] Wang, J., Du, W., Cao, W., Zhang, K., Wang, W., Liang, Y., and Wen, Q. (2024). Deep learning for multivariate time series imputation: A survey.
- [4] Mesquita, T. P., Silva, D. M. P. F., Ribeiro, A. M. N. C., Silva, I. R. R., Bastos-Filho, C. J. A., and Monteiro, R. P. (2024). A comparative analysis of deep learning-based methods for multivariate time series imputation with varying missing rates. In 2024 IEEE Eighth Ecuador Technical Chapters Meeting (ETCM).
- [5] Du, W., C^o ot' e, D., and Liu, Y. (2023). SAITS: Self-attention-based imputation for time series. Expert Systems with Applications.

PPGEC MSC 2026 1 DMPFS 01

- [6] Cao, W., Wang, D., Li, J., Zhou, H., Li, Y., and Li, L. (2018). Brits: bidirectional recurrent imputation for time series. In Proceedings of the 32nd International Conference on Neural Information Processing Systems.
- [7] Fortuin, V., Baranchuk, D., Raetsch, G., and Mandt, S. (2020). Gp-vae: Deep probabilistic time series imputation. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics.
- [8] Miao, X., Wu, Y., Wang, J., Gao, Y., Mao, X., and Yin, J. (2021). Generative semi-supervised learning for multivariate time series imputation. Proceedings of the AAAI Conference on Artificial Intelligence.
- [9] Yoon, J., Zame, W. R., and Van Der Schaar, M. (2019). Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks. IEEE Transactions on Biomedical Engineering.
- [10] Pfohl, S. R., Cole-Lewis, H., Sayres, R., Neal, D., Asiedu, M., Dieng, A., Tomasev, N., Rashid, Q. M., Azizi, S., Rostamzadeh, N., et al. (2024). A toolbox for surfacing health equity harms and biases in large language models. Nature Medicine, 30(12):3590–3600.
- [11] Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447–453.
- [12] Verma, S. and Rubin, J. (2018). Fairness definitions explained. In Proceedings of the International Workshop on Software Fairness, pages 1–7. ACM.
- [13] Min, S., Asif, H., and Vaidya, J. (2025). Exploring the inequitable impact of data missingness on fairness in machine learning. IEEE Intelligent Systems, 40(3):28–38.