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Multivariate time series (MTS) from healthcare data are often incomplete and irregular,
which makes reliable clinical inference difficult [1-3]. In this healthcare setting, MTS
are influenced by patients’ clinical conditions and the natural progression of care,
resulting in sparsity due to missing data and irregularity caused by asynchronous
sampling. Because of their sparsity and irregularity, a key step in managing healthcare
MTS is missing data imputation (MDI). State-of-the-art MDI techniques increasingly
depend on deep learning models [4], such as Self-Attention-Based Imputation for Time
Series (SAITS) [5], Bidirectional Recurrent Imputation for Time Series (BRITS) [6],
Gaussian Process Variational Autoencoder (GPVAE) [7], Unsupervised Generative
Adversarial Network (USGAN) [8], and Multidirectional Recurrent Neural Network
(M-RNN) [9]. These methods can learn the approximate distribution of the underlying
data from the observed data [3]. However, MDI in healthcare MTS is usually assessed
only with aggregate efficiency metrics—such as mean absolute error (MAE)—while
the algorithmic fairness of the underlying deep-learning models remains unexamined.
Algorithmic fairness—especially in healthcare—cannot be ignored, as algorithms used
for clinical inference and decision-making have the potential to cause harm [10-11].
Missing data is a major source of algorithmic unfairness. Although several fairness
concepts have been proposed, they mainly address downstream classification tasks and
often ignore fairness issues that arise during deep learning—based missing data
imputation (MDI) [12-13]. This proposal's main goal is to assess both the algorithmic
efficiency and fairness of cutting-edge deep learning models for MDI. This research
will highlight the fairness aspects of deep learning models in MDI and stress the
significance of imputation methods in healthcare MTS that focus on both efficiency
and fairness in developing new deep-learning techniques for MDI.
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