Divulgação - Defesa Nº 189

Aluno: Milla Silva Alcoforado Ferro
Título: “Interpretação do Aprendizado em Redes Neurais Piramidais com Restrição Não-negativa”.

Orientador: Prof. Bruno José Torres Fernandes
Data-hora: 28/Dezembro/2018 (9:00h)
Local: Escola Politécnica de Pernambuco – SALA I-4


Resumo:

“Redes Neurais Artificiais têm sido aplicadas com sucesso em diversos problemas de reconhecimento de padrões. Mesmo diante das muitas vantagens apresentadas por esse modelo, ainda há desvantagens na aplicação de redes neurais que ainda não foram resolvidas inteiramente. Uma delas diz respeito ao fato de esses modelos serem considerados como caixas-pretas. Entender o aprendizado das redes neurais é uma tarefa complexa devido às suas camadas não-lineares. É difícil compreender o que as fazem chegar a uma classificação particular ou decisão de reconhecimento dado um exemplo não visto da base de dados. Métodos de visualização do aprendizado da rede podem ser uma alternativa para mitigar este problema. Pois, através deles, pode-se entender melhor o comportamento das redes neurais, possibilitando inclusive o aperfeiçoamento dos modelos. Além disso, estudos tem demonstrado que restrições de não-negatividade em redes neurais também contribuem para a geração de modelos mais interpretáveis, devido a realização de um aprendizado por partes. Por isso, através da inserção da não-negatividade juntamente com um método de visualização, objetiva-se contribuir para geração de redes neurais mais transparentes e interpretáveis, para que forneçam não só o resultado final como também intuições sobre os dados de entrada e o funcionamento do classificador. Os experimentos foram realizados com duas redes piramidais, a Lateral Inhibition Pyramidal Neural Network (LIPNet) e a Structured Pyramidal Neural Network (SPNN), em problemas de reconhecimento de gênero e faces. Os resultados mostraram que os modelos não-negativos se revelaram mais interpretáveis. Além disso, houve ganhos na estabilidade e na robustez da rede.”

Go to top Menu