“Diariamente é produzido, por diferentes fontes, uma grande quantidade de dados que em sua maioria formam conjuntos de dados heterogêneos. Um recurso importante utilizado para analisar essa quantidade extensiva de dados são técnicas de aprendizado de máquina. Uma vez que, através de algumas dessas técnicas aplicadas nos dados podem ser extraídas informações relevantes. A extração de informação pode produzir conhecimentos para solucionar problemas em diferentes áreas, como saúde, educação. Uma das técnicas de aprendizado de máquina utilizadas para extração de informação é a regressão. No entanto, a análise de regressão, por exemplo regressão linear, pode não modelar de forma adequada os dados em conjuntos de dados heterogêneos, pois há um potencial diferente das variáveis independentes. Assim, uma questão relevante em regressão é como a heterogeneidade dos dados pode influenciar as relações entre as variáveis do modelo. Neste contexto, o presente trabalho tem como objetivo propor modelos combinados baseados em agrupamento e regressão no contexto de mineração de dados, de forma que os resultados obtidos e analisados ajudem a diminuir o erro de predição nos dados estudados. O desempenho do modelo proposto foi medido através do erro de predição, aplicando simulações Monte Carlo. Os resultados apontam menor erro de previsão para o modelo proposto na maioria dos casos estudados.”