Divulgação - Defesa Nº 195

Aluna: Iago Richard Rodrigues Silva

Título: “Modelos Baseados em Aprendizado de Máquina para Diagnóstico da Doença de Alzheimer”.

Orientadora: Profª. Roberta Andrade de Araujo Fagundes
Coorientador: Wellintong Pinheiro Santos

Data-hora: 21/Agosto/2019 (14:00h)
Local: Escola Politécnica de Pernambuco – SALA I-7


Resumo:

“A doença de Alzheimer (DA) é uma das doenças neurodegenerativas mais comuns presentes na sociedade. A DA está relacionada ao envelhecimento e é a forma mais comum de demência, com isso ela afeta em quase sua totalidade os idosos devido às alterações que ocorrem no cérebro. A DA apresenta-se como uma perda progressiva de características comportamentais e intelectuais. O declínio da memória, linguagem e percepção são alguns dos problemas. Não existe cura para Alzheimer, entretanto quando a doença é diagnosticada precoce e corretamente, tratamentos existentes podem amenizar a qualidade de vida do indivíduo. Existem diversos tipos de diagnósticos para esta doença, que podem seguir-se através de abordagens que utilizam testes cognitivos, sinais elétricos ou exames de imagem. Para análise destes exames, a utilização de algoritmos inteligentes têm se mostrado eficiente. Diante deste contexto, esta dissertação tem como objetivo apresentar dois modelos para diagnóstico da Doença de Alzheimer utilizando algoritmos aprendizado de máquina em imagens de ressonância magnética. O primeiro modelo consiste na utilização de extração explícita de atributos, tendo como o algoritmo de extração de texturas desenvolvido por Robert Haralick como agente. O segundo modelo foi elaborado a partir de extração de atributos por intermédio de uma rede neural convolucional proposta neste projeto de pesquisa. Em ambos os modelos foram executados algoritmos clássicos de aprendizado de máquina para classificação dos dados gerados pelos extratores de características, como SVM, Random Forest e K-NN. Ambos os modelos foram avaliados seguindo métricas tradicionais da literatura, como acurácia, sensibilidade e especificidade. Os resultados obtidos e avaliados mostram que houve contribuição na proposição destes novos modelos, e que eles contém resultados compatíveis com o estado da arte. O primeiro modelo apresenta-se com uma acurácia próxima a 80%, tendo mostrado avanço enquanto a trabalhos relacionados ao diagnóstico da doença utilizando três classes em imagens de ressonância magnética. Enquanto o segundo modelo apresentou resultados superiores a 90%, resolvendo o problema de classificação de duas classes.”

Go to top Menu