“O diagnóstico de deficiências cognitivas como demência e declínio cognitivo leve é desafiador, pois vários fatores estão relacionados não-linearmente a essas patologias. Assim, erros de classificação cometidos por um especialista podem se tornar mais frequentes. Neste trabalho é proposta uma técnica de classificação capaz de aprender os perfis dos pacientes de maneira não supervisionada e fornecer o valor semântico aos padrões encontrados usando a técnica Majority Voting. O objetivo é fornecer uma ferramenta robusta contra erros de classificação presentes nos dados. A técnica proposta apresenta uma acurácia média de 89,33 % e, quando comparado a uma rede neural artificial treinada de maneira supervisionada, é possível encontrar experimentalmente evidências de possíveis erros de diagnósticos em 9,14 % desse conjunto de dados. Isso mostra que essa contribuição é valiosa, pois pode indicar possíveis erros de rotulação.”