“O uso de ambientes virtuais de aprendizagem permitem mais interação no ensino a distância mas ao mesmo tempo traz consigo o distanciamento do aluno e do professor. Os métodos para identificar comportamentos aplicados na aprendizagem presencial enfrentam limitações no ensino à distância, fazendo com que os professores tenham dificuldade em identificar seu aluno. Esse trabalho tem como objetivo detectar os perfis de engajamento dos estudantes de ensino a distância utilizando técnicas de mineração de dados. Através de uma revisão sistemática da literatura, foram encontrados quais as principais variáveis utilizadas para identificar o engajamento do estudante nos ambientes virtuais de aprendizagem. O experimento seguiu as etapas do CRISP-DM e utilizou 3 algoritmos de agrupamento para identificar os perfis a partir das variáveis encontradas pela revisão sistemática da literatura. Os perfis encontrados possuem uma fraca relação entre eles, porém, é possível detectar os traços comportamentais dos estudantes nas plataformas de ensino a distância, sendo possível identificar os principais perfis de engajamento.”