Tradicionalmente modelos estatísticos têm sido aplicados na previsão de séries temporais, assim como modelos de machine learning. No entanto, essas abordagens apresentam limitações quando aplicados isoladamente. Por exemplo, um modelo estatístico pode não ser capaz de mapear padrões lineares, tal como modelos de machine learning podem não ser capazes de mapear padrões lineares com o mesmo desempenho que os padrões não lineares, além de durante o treinamento ficar preso em mínimos locais, estar sujeito à ocorrência de overfit, momento em que o modelo perde a capacidade de generalizar e passa a decorar os exemplos. Para superar essas limitação alguns estudos propõem, sistema híbridos a partir da combinação de modelos estatísticos com modelos não lineares. Entretanto esses estudos apresentam duas limitações: a determinação prévia da sequência de modelos a serem usados, e a seleção dos modelos lineares e não- lineares independente do conjunto de dados. Esse trabalho propõe uma metodologia que busca a melhor sequência de combinação para prever uma série temporal. Além disso, a abordagem indica qual o modelo mais adequado para ser aplicado nos passos de modelagem da série temporal e dos resíduos. Resultados experimentais mostraram que o método proposto apresenta desempenho superior quando comparado com métodos encontrados na literatura.