"Esta dissertação analisa e compara algoritmos meméticos em problemas de otimização por enxame. Os algoritmos meméticos são uma abordagem que combina as vantagens da otimização por enxame com a busca local, visando melhorar a eficiência e a qualidade das soluções encontradas. Foram realizadas avaliações da diversidade e qualidade das soluções geradas pelos algoritmos em diferentes topologias de PSO (Particle Swarm Optimization) utilizando métricas como a Interaction Diversity e a Portrait Divergence. Os resultados revelaram padrões distintos de exploração e explotação em cada algoritmo, fornecendo informações sobre o seu desempenho e comportamento ao longo do processo de otimização. Os resultados contribuem para uma compreensão mais profunda do desempenho e das características dos algoritmos meméticos em problemas de otimização de enxames, ajudando na seleção e desenvolvimento de abordagens práticas para a resolução de problemas complexos."