Esta dissertação se dedica ao desenvolvimento de uma metodologia robusta para a criação e implementação de Gêmeos Digitais interpretáveis e adaptáveis, focalizando aplicações industriais. Com o avanço tecnológico, o conceito de Gêmeos Digitais tem sido cada vez mais empregado como ferramenta para melhorar o desempenho e a eficiência de sistemas industriais. No entanto, o desenvolvimento de um Gêmeo Digital adaptativo e interpretável ainda é um desafio, especialmente quando se trata de sua aplicação em tempo real. A pesquisa começa com uma extensa fundamentação teórica, onde são abordados conceitos chave, como Gêmeos Digitais, Inteligência de Enxame, Automação Industrial e Máquinas Autoconscientes. A meto dologia proposta é então introduzida, combinando a modelagem analítica com a Otimização por Enxame de Partículas, para gerar um Gêmeo Digital que pode aprender e adaptar-se às mudanças no sistema físico correspondente. A metodologia proposta é dividida em três etapas principais: modelagem do sistema físico, que envolve a formulação de equações matemáticas representando os componentes físicos do sistema; estimação de parâmetros, onde o modelo é ajustado para refletir precisamente o estado atual do sistema; e finalmente a descoberta de componentes desconhecidos, que busca identificar e integrar qualquer componente ou interação não capturada durante a modelagem inicial. Dois estudos de caso - um motor DC industrial e um atuador hidráulico - são desenvolvidos e avaliados em um ambiente de simulação para validar a metodologia proposta. Os Gêmeos Digitais desenvolvidos são submetidos a diferentes cenários operacionais, fornecendo uma avaliação abrangente de suas performances, interpretabilidades e adaptabilidades. Os resultados obtidos reforçam que os gêmeos digitais, juntamente com algoritmos PSO, têm o potencial de melhorar significativamente a eficiência e o desempenho de diversas aplicações industriais. No entanto, é preciso levar em conta os desafios associados à implementação dos gêmeos digitais, como a necessidade de dados de alta qualidade e a utilização de algoritmos de otimização em tempo real. A dissertação conclui enfatizando a contribuição significativa desta pesquisa para o campo das máquinas autoconscientes, ao mesmo tempo em que destaca a necessidade de futuras pesquisas. Tais investigações devem explorar a detecção de falhas, a tomada de decisões baseada em gêmeos digitais, a extensão da seleção de modelos e a validação da metodologia proposta em aplicações físicas em tempo real.