DEFESA DE DISSERTAÇÃO DE MESTRADO Nº 290

Aluno: João Crisanto Souto Maior

Título: “Optimizing Industrial Operations through a tailored Digital Twin system for Real-time Sensor Data Processing and Forecasting"

Orientador: Byron Leite Dantas Bezerra - (PPGEC)

Coorientador: Cleber Zanchettin - (UFPE)

Examinador Externo: Rômulo César Dias de Andrade (UPE - Caruaru)

Examinador Interno: João Fausto Lorenzato de Oliveira - (PPGEC)

Data-hora: 16 de Fevereiro de 2024, às 10:00h.
Local: Formato Presencial, com transmissão.


Resumo:

         "A solda ponto é um dos processos de união de chapas metálicas mais amplamente utilizados para a construção das carrocerias e mais de 90% dos pontos de solda em todo o mundo são realizadas pela indústria automotiva. Falhas na formação dos pontos de solda podem afetar a rigidez, o desempenho de ruído e vibração do veículo em nível global, além da segurança dos passageiros, portanto, garantir a qualidade da solda ponto é de extrema importância. Respingos de solda são uma condição anômala de expulsão de material que ocorre de forma aleatória durante o processo e, uma vez que a existência de respingos pode ocasionar soldas de resistência e qualidade inadequadas, devem ser evitados. Partindo deste contexto e baseando-se em uma abordagem hipotético-dedutiva e de natureza aplicada, este projeto de pesquisa busca desenvolver modelos para detecção de anomalias, aplicando a técnica de aprendizado profundo mais utilizada para a detecção de anomalias em trabalhos recentes, identificada através de uma revisão sistemática da literatura. A pesquisa é aplicada aos dados do processo de solda ponto de uma unidade fabril automotiva que utiliza a tecnologia de solda BOSCH. O conjunto de dados, que contém parâmetros e medições do processo de solda ponto, possui muitos atributos e, por conta disso, é realizado um tratamento nos dados, visando inicialmente à redução de complexidade e redundâncias. Os níveis de respingos da base são utilizados como direcionadores para divisão dos dados em diferentes cenários, considerando maior ou menor proporção de anomalia para conduzir os experimentos e avaliar o desempenho dos algoritmos para cenários onde as anomalias são mais raras. Como os dados utilizados possuem uma rotulação específica em relação ao problema dos respingos, é considerada uma abordagem de aprendizado semi-supervisionado para identificar sua ocorrência. Após implementação de alguns modelos com diferentes arquiteturas e estratégias de ajuste de hiperparâmetros e seleção de thresholds, é realizada uma comparação destes modelos com diferentes abordagens tradicionais de classificação existentes, buscando verificar quais trazem resultados mais robustos para a tarefa de detecção das anomalias, e que melhor se adequam à natureza dos dados do processo de solda ponto, considerando diferentes métricas de avaliação."

Defesa 290
Go to top Menu