Divulgação - Defesa Nº 215

Aluno: Raniel Gomes da Silva

Título: “Desenvolvimento de um Ambiente de Aprendizado de Máquina Automatizado integrável a Múltiplos AVAs”.

Orientador: Prof. Alexandre Magno Andrade Maciel
Coorientador: Rodrigo Lins Rodrigues

Data-hora: 31/Agosto/2020 (14:00h)
Local: Escola Politécnica de Pernambuco – Formato Remoto (http://meet.google.com/pmi-ddxf-ssw)


Resumo:

“Na última década, a adoção de ferramentas de ensino à distância cresceu exponencialmente. Consequentemente, um grande volume de dados têm surgido a partir do uso massivo dos Ambientes Virtuais de Aprendizagem (AVA). As informações contidas nesses dados, têm possibilitado na evolução da Mineração de Dados Educacionais (MDE), cujo objetivo é aplicar o Aprendizado de Máquina (AM) em contextos educacionais. No entanto, a construção de modelos de AM precisos e robustos, exige na maioria dos casos, um conhecimento avançado em ciência dos dados. Além disso, outros fatores como o tempo de desenvolvimento, a propensão a erros na definição do melhor algoritmo e a dificuldade na definição correta dos parâmetros de entrada dos modelos, comprometem a produtividade na MDE. Para solucionar tais problemas, as técnicas de Aprendizado de Máquina Automatizado (AutoML) têm sido estudadas, com o objetivo de simplificar os processos fatídicos de Mineração de Dados e que não exigem conhecimento de domínio na maioria dos casos. Técnicas de Otimização Bayesiana (OB) e Algoritmo Evolucionário (BA) têm sido aplicadas nas categorias de Engenharia Automatizada de Features (AutoFE) e na Automação de Modelos com Aprendizado de Hiperparâmetros (AutoMHL). Para validar a aplicação dessas técnicas, foi utilizada a base de dados do Núcleo de Educação à Distância da Universidade de Pernambuco (NEAD). Os experimentos comprovaram que as técnicas de GA têm apresentado melhores resultados em comparação com as técnicas de OB. Em comparação com as abordagens clássicas de MDE, os experimentos apresentaram um resultado superior, obtendo-se uma acurácia de 92% no processo de classificação do desempenho estudantil. Além disso, foi desenvolvido um ambiente de Aprendizado de Máquina Automatizado e integrável a múltiplos AVAs. Esse ambiente é denominado de Framework de Mineração de Dados Educacionais (FMDEV), cujo objetivo é permitir que usuários, quer sejam técnicos ou não, possam construir, validar e disponibilizar, baselines de AM com maior produtividade e com menor conhecimento em ciência de dados. Esse ambiente fez uso das técnicas de OB e foi validado com especialistas em ciência de dados e também com especialistas na área de educação. Os resultados das opiniões dos especialistas, comprovam que o FMDEV pode contribuir na construção de melhores modelos de AM, como também em promover a democratização da ciência de dados para usuários com pouco conhecimento nessa área..”

Go to top Menu