Divulgação - Defesa Nº 214

Aluno: Rafael Diniz Toscano de Lima

Título: “Série Genética de Fourier: Um método inteligente de modelagem de séries temporais financeiras”.

Orientador: Prof°. Sérgio Murilo Maciel Fernandes

Data-hora: 31/Agosto/2020 (11:00h)
Local: Escola Politécnica de Pernambuco – Formato Remoto (http://meet.google.com/mxh-nuae-afp)


Resumo:

“O Mercado Financeiro é um ambiente público e organizado para a negociação de títulos. Na economia moderna, as operações realizadas nesse mercado ocorrem por intermédio das bolsas de valores, criptográficas, através de plataformas digitais onde os investidores podem negociar de forma transparente a compra e venda de títulos. Com o crescimento do volume de investimentos e negociações nas bolsas e com a adoção massiva dos chamados cripto ativos, surgiu a necessidade da utilização de ferramentas de apoio ao processo de tomada de decisão. Através da automação em software, tornou-se possível a implementação de técnicas que viabilizam a tomada de decisão em intervalos de tempo cada vez menores, prevendo o comportamento do mercado com a maior precisão possível. Essas ferramentas têm como objetivo o aumento dos lucros e a mitigação dos riscos envolvidos nas transações efetuadas no mercado acionário. Atualmente, existem várias plataformas digitais de negociação, através das quais pode-se programar ordens de compra e venda de papéis sem a intervenção humana. São inúmeras as técnicas que processam as ditas séries temporais, coleções de observações realizadas sequencialmente no tempo. Assim, o presente trabalho realiza um estudo do estado da arte das técnicas de previsão em séries temporais (forecasting) encontrada nas pesquisas mais recentes, quais sejam: Redes Neurais Artificiais, Support Vector Machines e Deep Learning, bem como as técnicas de regressão de estatística clássica, onde destacam-se a Regressão Logística e a técnica ARIMA. Fazendo uma análise sobre os trabalhos relacionados, o presente trabalho propõe um método automático de modelagem que mescla pontos fortes das técnicas existentes, abstraindo os atributos de sazonalidade, tendência, variância e correlação em uma representação concisa, através de uma soma finita de expressões matemáticas com forte inspiração na Série de Fourier. Através da otimização combinatória obtida pela aplicação de técnicas de Computação Inteligente, foram concebidas modelagens de séries temporais com processamento numérico, obtendo modelagens acuradas, realizando-se testes em dados reais dispostos em bases publicadas por instituições reguladoras do mercado financeiro.”

Go to top Menu