Among the neglected tropical diseases (NTDs), arboviruses have a significant number of cases worldwide. In addition, the effects of the lockdown caused by COVID-19 contributed to the increase in cases of this type of virus. Its correct classification is a complex process due to the great similarity of symptoms between arboviruses. In addition, the lack of laboratory tests, especially in the interior of the country, is an additional obstacle to this problem. Given this context, this work proposes a machine learning model to assist health professionals in the clinical diagnosis of patients suspected of the most common arboviruses, Dengue and Chikungunya. For this, the model will make a multi-class classification between DENGUE, CHIKUNGUNYA and INCONCLUSIVE, to identify patients who do not have any of this two diseases. Eight models were initially tested and optimized through Grid Search technique, feature selection techniques were also performed to select the best attributes (symptoms and patient history) from the dataset. Finally, an evaluation of the selected attributes was also carried out with experts in the field to create a model that is more interpretable for health professionals. This work developed the GBM-Specialist, a Gradient Boosting model validated by experts, which achieved 76% sensitivity in the CHIKUNGUNYA class. Finally, a prototype, VALERIA, was developed so that the model can be used by healthcare professionals in real-world application.
Existem algumas dúvidas nas disciplinas ofertadas devido ao formato de apresentação da grade no site, a grade divide as disciplinas a nível de mestrado e doutorado, mas é uma mera restrição de exibição do sistema utilizado.
Apesar dessas restrições,vale ressaltar que as ÚNICAS disciplinas exclusivas para ALUNOS DE DOUTORADO são :
Logo, TODAS disciplinas ofertadas, com EXCEÇÃO das duas acima, podem ser cursadas pelos alunos de mestrado.
Além disso, os discentes deverão notar que as disciplinas ofertadas no formulário de matrícula possuem entre parênteses "Iniciada em Setembro" ou "Iniciada em Outubro", matenham isso em mente durante a matrícula.
Para a dispensa de estágio docência, é necessário ser professor a nível de Graduação, Tecnólogo, ou equivalente a nível superior no presencial ou EAD, atuando durante o período da pós-graduação.
No caso da ausência de comprovante de residência, o candidato a bolsa terá um período de 1 mês para entrega do comprovante.
O Programa de Pós-graduação em Engenharia de Computação (PPGEC) da Universidade de Pernambuco anuncia o resultado final da seleção de alunos regulares (turma 2022.1) dos cursos de Mestrado e Doutorado. Nos documentos de divulgação (disponíveis ao fim do texto) se encontram as listas de candidatos aprovados na etapa e seus orientadores. Não são divulgados no documento os candidatos não aprovados.
Mestrado: AQUI
Doutorado: AQUI
O Programa de Pós-graduação em Engenharia de Computação (PPGEC) da Universidade de Pernambuco anuncia o resultado final da seleção de alunos especiais (turma 2022.1). Nos documentos de divulgação (disponíveis ao fim do texto) se encontram as listas de candidatos aprovados na etapa. Não são divulgados no documento os candidatos não aprovados.
Resultado Especial