Scene texts contain rich semantic information which may be used in many vision-based applica-tions. With the rise of deep learning, significant advances in scene text detection and recognitionin natural images have been made. However, in real scenes, shapes may contain severe occlusions,hardening the identification of texts. Moreover, the lack of consistent real-world datasets, richerannotations, and evaluations in the specific occlusion problem make the severe impact threat tothe algorithm’s performance caused by occlusion still an open issue. Therefore, unlike previousworks in this field, our research addresses occlusions in scene text recognition. The goal is toassess how robust and efficient are the existing deep architectures for scene text detection andrecognition facing various occlusion levels. First, we investigated state-of-the-art scene textidentification (detection and recognition), choosing four algorithms for scene text detection andthe other four for scene text recognition. Then, we evaluated these current deep architecturesperformances on ICDAR 2015 dataset without any generated occlusion. Second, we created amethodology to generate large datasets of scene text in natural images with ranges of occlusionbetween 0 and 100%. From this methodology, we produced the ISTD-OC, a dataset derivatedfrom the ICDAR 2015 database that we used to evaluate the chose deep architectures underdifferent levels of occlusion. The results demonstrated that these existing deep architecturesthat have achieved state-of-the-art are still far from understanding text instances in a real-worldscenario. Unlike the human vision systems, which can comprehend occluded instances by con-textual reasoning and association, our extensive experimental evaluations show that current scenetext recognition models are inefficient when high occlusions exist in a scene. Nevertheless, forscene text detection, PSENet has shown robustness for high occlusion levels, presenting 87% ofprecision in text instances with around 70% of occlusion. At higher levels, the model learns onlyto detect the pattern of the occlusion employed instead of the text. Results provided insights onthe capabilities and limitations of the recent proposed deep models facing occlusion, which canreference future studies in complex and diverse scenes.
Esta dissertação investigação a aplicação de técnicas de aprendizado de máquina para aplicação em modelagem de antenas, com o objetivo de encontrar um modelo substituto que tenha uma boa capacidade de representação, baixo custo computacional e que permita a aplicação de meta-heurísticas de otimização no projeto dos parâmetros da antena. Em primeiro lugar foi investigado a implementação e o desempenho de algumas técnicas de aprendizado de máquina, incluindo k-Vizinhos mais Próximos(KNN), Máquinas de Vetores de Suporte (SVR), LASSO, Florestas Aleatórias (RF), Splines de Regressão Adaptativa Multivariada (MARS), Processo Gaussiano (GP), Categorical Boosting(CatBoost), rede neural multilayer perceptron. Em seguida as técnicas foram comparadas e analisadas. Para a antena dipolo teve três modelos conseguiram um bom desempenho: Máquinas de Vetores de Suporte, Processo Gaussiano e CatBoost. Para a antena \emph{Quasi- Yagi} o Processo Gaussiano foi o que obteve o melhor desempenho.
"Nos últimos anos, o ensino em Engenharia de Software (ES) evoluiu tanto na teoria, quanto na prática, tendo como propósito atender às exigências da sociedade e ao dinamismo da indústria de software que requisita por profissionais qualificados. Neste sentido, o uso de Metodologias Ativas (MAs) vem ganhando destaque no ensino em ES como alternativas que potencializam o aprendizado mais significativo, aproximando a academia da indústria e estimulando destrezas por intermédio de uma formação humanística, crítica e reflexiva. Apesar de tais benefícios, os docentes da área relatam que ainda existe um baixo entendimento sobre a utilização e seleção dessas estratégias, tornando a implantação um desafio. Associado ao entendimento, pode-se elencar a carência de materiais e ferramentas que proporcionem o apoio para que os docentes selecionem a metodologia ativa que melhor se enquadre diante do contexto a ser aplicada. Frente a essa situação, este trabalho possui como objetivo auxiliar os docentes a selecionarem MAs adequadas, intencionando a adoção da aprendizagem ativa no processo de ensino em ES, de modo que alavanque o desenvolvimento de competências e habilidades nos discentes. Para esse fim, desenvolveu-se um guia de apoio que oportuniza o docente a selecionar o tipo de metodologia ativa a ser introduzida no ensino em ES a partir da identificação do perfil e do estilo de aprendizagem dos discentes. O trabalho foi realizado através da abordagem de pesquisa Design Science Research. Inicialmente, conduziu-se uma Revisão Sistemática da Literatura que possibilitou a compreensão dos aspectos associados ao uso das MAs no ensino em ES. Em paralelo, aplicou-se um survey com docentes da ES em Instituições de Ensino Superior a fim de adquirir diretrizes mais consistentes no tocante ao campo de atuação e nos cenários reais de aplicação das MAs. Adicionalmente, o guia de apoio foi desenvolvido com base na realização de dois ciclos de design intercalados por um ciclo de avaliação. Ao final, a validação sucedeu-se mediante a aplicação de um questionário com um painel composto por especialistas que atuam na área de ensino em ES. De acordo com as avaliações, os resultados evidenciaram um bom nível de aceitação do guia de apoio, bem como indicativos de sua compreensão, clareza, facilidade de uso, organização e flexibilidade. Além disso, o guia de apoio favorece a visualização e seleção das MAs de modo que essas ações possam ser realizadas com baixo nível de esforço e por docentes que possuam poucas habilidades. Assim, a análise desses resultados permite, dentro dos limites estabelecidos, concluir que o guia de apoio pode ser utilizado como uma ferramenta pedagógica no processo de ensino-aprendizagem ativa em ES."